3.2.53 \(\int (2+3 x^2) \sqrt {3+5 x^2+x^4} \, dx\) [153]

3.2.53.1 Optimal result
3.2.53.2 Mathematica [C] (warning: unable to verify)
3.2.53.3 Rubi [A] (verified)
3.2.53.4 Maple [A] (verified)
3.2.53.5 Fricas [A] (verification not implemented)
3.2.53.6 Sympy [F]
3.2.53.7 Maxima [F]
3.2.53.8 Giac [F]
3.2.53.9 Mupad [F(-1)]

3.2.53.1 Optimal result

Integrand size = 22, antiderivative size = 279 \[ \int \left (2+3 x^2\right ) \sqrt {3+5 x^2+x^4} \, dx=-\frac {23 x \left (5+\sqrt {13}+2 x^2\right )}{15 \sqrt {3+5 x^2+x^4}}+\frac {1}{15} x \left (25+9 x^2\right ) \sqrt {3+5 x^2+x^4}+\frac {23 \sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} \sqrt {\frac {6+\left (5-\sqrt {13}\right ) x^2}{6+\left (5+\sqrt {13}\right ) x^2}} \left (6+\left (5+\sqrt {13}\right ) x^2\right ) E\left (\arctan \left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right )|\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{15 \sqrt {3+5 x^2+x^4}}+\frac {\sqrt {\frac {6+\left (5-\sqrt {13}\right ) x^2}{6+\left (5+\sqrt {13}\right ) x^2}} \left (6+\left (5+\sqrt {13}\right ) x^2\right ) \operatorname {EllipticF}\left (\arctan \left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right ),\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{\sqrt {6 \left (5+\sqrt {13}\right )} \sqrt {3+5 x^2+x^4}} \]

output
-23/15*x*(5+2*x^2+13^(1/2))/(x^4+5*x^2+3)^(1/2)+1/15*x*(9*x^2+25)*(x^4+5*x 
^2+3)^(1/2)+23/90*(1/(36+x^2*(30+6*13^(1/2))))^(1/2)*(36+x^2*(30+6*13^(1/2 
)))^(1/2)*EllipticE(x*(30+6*13^(1/2))^(1/2)/(36+x^2*(30+6*13^(1/2)))^(1/2) 
,1/6*(-78+30*13^(1/2))^(1/2))*(6+x^2*(5+13^(1/2)))*(30+6*13^(1/2))^(1/2)*( 
(6+x^2*(5-13^(1/2)))/(6+x^2*(5+13^(1/2))))^(1/2)/(x^4+5*x^2+3)^(1/2)+(1/(3 
6+x^2*(30+6*13^(1/2))))^(1/2)*(36+x^2*(30+6*13^(1/2)))^(1/2)*EllipticF(x*( 
30+6*13^(1/2))^(1/2)/(36+x^2*(30+6*13^(1/2)))^(1/2),1/6*(-78+30*13^(1/2))^ 
(1/2))*(6+x^2*(5+13^(1/2)))*((6+x^2*(5-13^(1/2)))/(6+x^2*(5+13^(1/2))))^(1 
/2)/(x^4+5*x^2+3)^(1/2)/(30+6*13^(1/2))^(1/2)
 
3.2.53.2 Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 5.06 (sec) , antiderivative size = 229, normalized size of antiderivative = 0.82 \[ \int \left (2+3 x^2\right ) \sqrt {3+5 x^2+x^4} \, dx=\frac {2 x \left (75+152 x^2+70 x^4+9 x^6\right )-23 i \sqrt {2} \left (-5+\sqrt {13}\right ) \sqrt {\frac {-5+\sqrt {13}-2 x^2}{-5+\sqrt {13}}} \sqrt {5+\sqrt {13}+2 x^2} E\left (i \text {arcsinh}\left (\sqrt {\frac {2}{5+\sqrt {13}}} x\right )|\frac {19}{6}+\frac {5 \sqrt {13}}{6}\right )+i \sqrt {2} \left (-130+23 \sqrt {13}\right ) \sqrt {\frac {-5+\sqrt {13}-2 x^2}{-5+\sqrt {13}}} \sqrt {5+\sqrt {13}+2 x^2} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {2}{5+\sqrt {13}}} x\right ),\frac {19}{6}+\frac {5 \sqrt {13}}{6}\right )}{30 \sqrt {3+5 x^2+x^4}} \]

input
Integrate[(2 + 3*x^2)*Sqrt[3 + 5*x^2 + x^4],x]
 
output
(2*x*(75 + 152*x^2 + 70*x^4 + 9*x^6) - (23*I)*Sqrt[2]*(-5 + Sqrt[13])*Sqrt 
[(-5 + Sqrt[13] - 2*x^2)/(-5 + Sqrt[13])]*Sqrt[5 + Sqrt[13] + 2*x^2]*Ellip 
ticE[I*ArcSinh[Sqrt[2/(5 + Sqrt[13])]*x], 19/6 + (5*Sqrt[13])/6] + I*Sqrt[ 
2]*(-130 + 23*Sqrt[13])*Sqrt[(-5 + Sqrt[13] - 2*x^2)/(-5 + Sqrt[13])]*Sqrt 
[5 + Sqrt[13] + 2*x^2]*EllipticF[I*ArcSinh[Sqrt[2/(5 + Sqrt[13])]*x], 19/6 
 + (5*Sqrt[13])/6])/(30*Sqrt[3 + 5*x^2 + x^4])
 
3.2.53.3 Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 292, normalized size of antiderivative = 1.05, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {1490, 1503, 1412, 1455}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \left (3 x^2+2\right ) \sqrt {x^4+5 x^2+3} \, dx\)

\(\Big \downarrow \) 1490

\(\displaystyle \frac {1}{15} \int \frac {15-46 x^2}{\sqrt {x^4+5 x^2+3}}dx+\frac {1}{15} x \sqrt {x^4+5 x^2+3} \left (9 x^2+25\right )\)

\(\Big \downarrow \) 1503

\(\displaystyle \frac {1}{15} \left (15 \int \frac {1}{\sqrt {x^4+5 x^2+3}}dx-46 \int \frac {x^2}{\sqrt {x^4+5 x^2+3}}dx\right )+\frac {1}{15} x \sqrt {x^4+5 x^2+3} \left (9 x^2+25\right )\)

\(\Big \downarrow \) 1412

\(\displaystyle \frac {1}{15} \left (\frac {5 \sqrt {\frac {3}{2 \left (5+\sqrt {13}\right )}} \sqrt {\frac {\left (5-\sqrt {13}\right ) x^2+6}{\left (5+\sqrt {13}\right ) x^2+6}} \left (\left (5+\sqrt {13}\right ) x^2+6\right ) \operatorname {EllipticF}\left (\arctan \left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right ),\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{\sqrt {x^4+5 x^2+3}}-46 \int \frac {x^2}{\sqrt {x^4+5 x^2+3}}dx\right )+\frac {1}{15} x \sqrt {x^4+5 x^2+3} \left (9 x^2+25\right )\)

\(\Big \downarrow \) 1455

\(\displaystyle \frac {1}{15} \left (\frac {5 \sqrt {\frac {3}{2 \left (5+\sqrt {13}\right )}} \sqrt {\frac {\left (5-\sqrt {13}\right ) x^2+6}{\left (5+\sqrt {13}\right ) x^2+6}} \left (\left (5+\sqrt {13}\right ) x^2+6\right ) \operatorname {EllipticF}\left (\arctan \left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right ),\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{\sqrt {x^4+5 x^2+3}}-46 \left (\frac {x \left (2 x^2+\sqrt {13}+5\right )}{2 \sqrt {x^4+5 x^2+3}}-\frac {\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} \sqrt {\frac {\left (5-\sqrt {13}\right ) x^2+6}{\left (5+\sqrt {13}\right ) x^2+6}} \left (\left (5+\sqrt {13}\right ) x^2+6\right ) E\left (\arctan \left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right )|\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{2 \sqrt {x^4+5 x^2+3}}\right )\right )+\frac {1}{15} x \sqrt {x^4+5 x^2+3} \left (9 x^2+25\right )\)

input
Int[(2 + 3*x^2)*Sqrt[3 + 5*x^2 + x^4],x]
 
output
(x*(25 + 9*x^2)*Sqrt[3 + 5*x^2 + x^4])/15 + (-46*((x*(5 + Sqrt[13] + 2*x^2 
))/(2*Sqrt[3 + 5*x^2 + x^4]) - (Sqrt[(5 + Sqrt[13])/6]*Sqrt[(6 + (5 - Sqrt 
[13])*x^2)/(6 + (5 + Sqrt[13])*x^2)]*(6 + (5 + Sqrt[13])*x^2)*EllipticE[Ar 
cTan[Sqrt[(5 + Sqrt[13])/6]*x], (-13 + 5*Sqrt[13])/6])/(2*Sqrt[3 + 5*x^2 + 
 x^4])) + (5*Sqrt[3/(2*(5 + Sqrt[13]))]*Sqrt[(6 + (5 - Sqrt[13])*x^2)/(6 + 
 (5 + Sqrt[13])*x^2)]*(6 + (5 + Sqrt[13])*x^2)*EllipticF[ArcTan[Sqrt[(5 + 
Sqrt[13])/6]*x], (-13 + 5*Sqrt[13])/6])/Sqrt[3 + 5*x^2 + x^4])/15
 

3.2.53.3.1 Defintions of rubi rules used

rule 1412
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b 
^2 - 4*a*c, 2]}, Simp[(2*a + (b + q)*x^2)*(Sqrt[(2*a + (b - q)*x^2)/(2*a + 
(b + q)*x^2)]/(2*a*Rt[(b + q)/(2*a), 2]*Sqrt[a + b*x^2 + c*x^4]))*EllipticF 
[ArcTan[Rt[(b + q)/(2*a), 2]*x], 2*(q/(b + q))], x] /; PosQ[(b + q)/a] && 
!(PosQ[(b - q)/a] && SimplerSqrtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; FreeQ[ 
{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]
 

rule 1455
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[b^2 - 4*a*c, 2]}, Simp[x*((b + q + 2*c*x^2)/(2*c*Sqrt[a + b*x^2 + c*x^4 
])), x] - Simp[Rt[(b + q)/(2*a), 2]*(2*a + (b + q)*x^2)*(Sqrt[(2*a + (b - q 
)*x^2)/(2*a + (b + q)*x^2)]/(2*c*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[ArcTan 
[Rt[(b + q)/(2*a), 2]*x], 2*(q/(b + q))], x] /; PosQ[(b + q)/a] &&  !(PosQ[ 
(b - q)/a] && SimplerSqrtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; FreeQ[{a, b, 
c}, x] && GtQ[b^2 - 4*a*c, 0]
 

rule 1490
Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symb 
ol] :> Simp[x*(2*b*e*p + c*d*(4*p + 3) + c*e*(4*p + 1)*x^2)*((a + b*x^2 + c 
*x^4)^p/(c*(4*p + 1)*(4*p + 3))), x] + Simp[2*(p/(c*(4*p + 1)*(4*p + 3))) 
 Int[Simp[2*a*c*d*(4*p + 3) - a*b*e + (2*a*c*e*(4*p + 1) + b*c*d*(4*p + 3) 
- b^2*e*(2*p + 1))*x^2, x]*(a + b*x^2 + c*x^4)^(p - 1), x], x] /; FreeQ[{a, 
 b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && 
 GtQ[p, 0] && FractionQ[p] && IntegerQ[2*p]
 

rule 1503
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[d   Int[1/Sqrt[a + b*x^2 + c*x^4] 
, x], x] + Simp[e   Int[x^2/Sqrt[a + b*x^2 + c*x^4], x], x] /; PosQ[(b + q) 
/a] || PosQ[(b - q)/a]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0]
 
3.2.53.4 Maple [A] (verified)

Time = 1.74 (sec) , antiderivative size = 216, normalized size of antiderivative = 0.77

method result size
risch \(\frac {x \left (9 x^{2}+25\right ) \sqrt {x^{4}+5 x^{2}+3}}{15}+\frac {6 \sqrt {1-\left (-\frac {5}{6}+\frac {\sqrt {13}}{6}\right ) x^{2}}\, \sqrt {1-\left (-\frac {5}{6}-\frac {\sqrt {13}}{6}\right ) x^{2}}\, F\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )}{\sqrt {-30+6 \sqrt {13}}\, \sqrt {x^{4}+5 x^{2}+3}}+\frac {552 \sqrt {1-\left (-\frac {5}{6}+\frac {\sqrt {13}}{6}\right ) x^{2}}\, \sqrt {1-\left (-\frac {5}{6}-\frac {\sqrt {13}}{6}\right ) x^{2}}\, \left (F\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )-E\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )\right )}{5 \sqrt {-30+6 \sqrt {13}}\, \sqrt {x^{4}+5 x^{2}+3}\, \left (5+\sqrt {13}\right )}\) \(216\)
default \(\frac {5 x \sqrt {x^{4}+5 x^{2}+3}}{3}+\frac {6 \sqrt {1-\left (-\frac {5}{6}+\frac {\sqrt {13}}{6}\right ) x^{2}}\, \sqrt {1-\left (-\frac {5}{6}-\frac {\sqrt {13}}{6}\right ) x^{2}}\, F\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )}{\sqrt {-30+6 \sqrt {13}}\, \sqrt {x^{4}+5 x^{2}+3}}+\frac {552 \sqrt {1-\left (-\frac {5}{6}+\frac {\sqrt {13}}{6}\right ) x^{2}}\, \sqrt {1-\left (-\frac {5}{6}-\frac {\sqrt {13}}{6}\right ) x^{2}}\, \left (F\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )-E\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )\right )}{5 \sqrt {-30+6 \sqrt {13}}\, \sqrt {x^{4}+5 x^{2}+3}\, \left (5+\sqrt {13}\right )}+\frac {3 x^{3} \sqrt {x^{4}+5 x^{2}+3}}{5}\) \(226\)
elliptic \(\frac {5 x \sqrt {x^{4}+5 x^{2}+3}}{3}+\frac {6 \sqrt {1-\left (-\frac {5}{6}+\frac {\sqrt {13}}{6}\right ) x^{2}}\, \sqrt {1-\left (-\frac {5}{6}-\frac {\sqrt {13}}{6}\right ) x^{2}}\, F\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )}{\sqrt {-30+6 \sqrt {13}}\, \sqrt {x^{4}+5 x^{2}+3}}+\frac {552 \sqrt {1-\left (-\frac {5}{6}+\frac {\sqrt {13}}{6}\right ) x^{2}}\, \sqrt {1-\left (-\frac {5}{6}-\frac {\sqrt {13}}{6}\right ) x^{2}}\, \left (F\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )-E\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )\right )}{5 \sqrt {-30+6 \sqrt {13}}\, \sqrt {x^{4}+5 x^{2}+3}\, \left (5+\sqrt {13}\right )}+\frac {3 x^{3} \sqrt {x^{4}+5 x^{2}+3}}{5}\) \(226\)

input
int((3*x^2+2)*(x^4+5*x^2+3)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/15*x*(9*x^2+25)*(x^4+5*x^2+3)^(1/2)+6/(-30+6*13^(1/2))^(1/2)*(1-(-5/6+1/ 
6*13^(1/2))*x^2)^(1/2)*(1-(-5/6-1/6*13^(1/2))*x^2)^(1/2)/(x^4+5*x^2+3)^(1/ 
2)*EllipticF(1/6*x*(-30+6*13^(1/2))^(1/2),5/6*3^(1/2)+1/6*39^(1/2))+552/5/ 
(-30+6*13^(1/2))^(1/2)*(1-(-5/6+1/6*13^(1/2))*x^2)^(1/2)*(1-(-5/6-1/6*13^( 
1/2))*x^2)^(1/2)/(x^4+5*x^2+3)^(1/2)/(5+13^(1/2))*(EllipticF(1/6*x*(-30+6* 
13^(1/2))^(1/2),5/6*3^(1/2)+1/6*39^(1/2))-EllipticE(1/6*x*(-30+6*13^(1/2)) 
^(1/2),5/6*3^(1/2)+1/6*39^(1/2)))
 
3.2.53.5 Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 129, normalized size of antiderivative = 0.46 \[ \int \left (2+3 x^2\right ) \sqrt {3+5 x^2+x^4} \, dx=-\frac {46 \, {\left (\sqrt {13} \sqrt {2} x - 5 \, \sqrt {2} x\right )} \sqrt {\sqrt {13} - 5} E(\arcsin \left (\frac {\sqrt {2} \sqrt {\sqrt {13} - 5}}{2 \, x}\right )\,|\,\frac {5}{6} \, \sqrt {13} + \frac {19}{6}) - {\left (51 \, \sqrt {13} \sqrt {2} x - 205 \, \sqrt {2} x\right )} \sqrt {\sqrt {13} - 5} F(\arcsin \left (\frac {\sqrt {2} \sqrt {\sqrt {13} - 5}}{2 \, x}\right )\,|\,\frac {5}{6} \, \sqrt {13} + \frac {19}{6}) - 4 \, {\left (9 \, x^{4} + 25 \, x^{2} - 46\right )} \sqrt {x^{4} + 5 \, x^{2} + 3}}{60 \, x} \]

input
integrate((3*x^2+2)*(x^4+5*x^2+3)^(1/2),x, algorithm="fricas")
 
output
-1/60*(46*(sqrt(13)*sqrt(2)*x - 5*sqrt(2)*x)*sqrt(sqrt(13) - 5)*elliptic_e 
(arcsin(1/2*sqrt(2)*sqrt(sqrt(13) - 5)/x), 5/6*sqrt(13) + 19/6) - (51*sqrt 
(13)*sqrt(2)*x - 205*sqrt(2)*x)*sqrt(sqrt(13) - 5)*elliptic_f(arcsin(1/2*s 
qrt(2)*sqrt(sqrt(13) - 5)/x), 5/6*sqrt(13) + 19/6) - 4*(9*x^4 + 25*x^2 - 4 
6)*sqrt(x^4 + 5*x^2 + 3))/x
 
3.2.53.6 Sympy [F]

\[ \int \left (2+3 x^2\right ) \sqrt {3+5 x^2+x^4} \, dx=\int \left (3 x^{2} + 2\right ) \sqrt {x^{4} + 5 x^{2} + 3}\, dx \]

input
integrate((3*x**2+2)*(x**4+5*x**2+3)**(1/2),x)
 
output
Integral((3*x**2 + 2)*sqrt(x**4 + 5*x**2 + 3), x)
 
3.2.53.7 Maxima [F]

\[ \int \left (2+3 x^2\right ) \sqrt {3+5 x^2+x^4} \, dx=\int { \sqrt {x^{4} + 5 \, x^{2} + 3} {\left (3 \, x^{2} + 2\right )} \,d x } \]

input
integrate((3*x^2+2)*(x^4+5*x^2+3)^(1/2),x, algorithm="maxima")
 
output
integrate(sqrt(x^4 + 5*x^2 + 3)*(3*x^2 + 2), x)
 
3.2.53.8 Giac [F]

\[ \int \left (2+3 x^2\right ) \sqrt {3+5 x^2+x^4} \, dx=\int { \sqrt {x^{4} + 5 \, x^{2} + 3} {\left (3 \, x^{2} + 2\right )} \,d x } \]

input
integrate((3*x^2+2)*(x^4+5*x^2+3)^(1/2),x, algorithm="giac")
 
output
integrate(sqrt(x^4 + 5*x^2 + 3)*(3*x^2 + 2), x)
 
3.2.53.9 Mupad [F(-1)]

Timed out. \[ \int \left (2+3 x^2\right ) \sqrt {3+5 x^2+x^4} \, dx=\int \left (3\,x^2+2\right )\,\sqrt {x^4+5\,x^2+3} \,d x \]

input
int((3*x^2 + 2)*(5*x^2 + x^4 + 3)^(1/2),x)
 
output
int((3*x^2 + 2)*(5*x^2 + x^4 + 3)^(1/2), x)